Problema P13 (Il Problema di Dirichlet: metodo di Perron [J, Cap. 4, §4])

Definizione 1 Sia $U \subseteq \mathbb{R}^n$ un insieme aperto, connesso e limitato. Una funzione $u \in C(U)$ si dice subarmonica se per ogni $x \in U$ esiste r > 0 tale che $B(x,r) \subseteq U$ e, per ogni $0 < \rho \le r$, si ha che

$$u(x) \le \int_{\partial B(x,\rho)} u d\sigma$$
 (1)

La famiglia di tutte le funzioni subarmoniche in U si denota $\operatorname{con}^1 \sigma(U)$. Una funzione u si dice superarmonica in U se $-u \in \sigma(U)$.

Definizione 2 Sia $u \in C(U)$ e $\bar{B}(x,r) \subseteq U$. Definiamo $u_{x,r}$ la funzione che coincide con u in $U \setminus B(x,r)$ ed è armonica in B(x,r).

Definizione 3 Data $f \in C(\partial U)$ definiamo $\sigma_f(U) := \{u \in C(\bar{U}) \cap \sigma(U) \text{ t.c. } u \leq f \text{ su } \partial U\};$ definiamo anche, per ogni $x \in U$, $w_f(x) := \sup_{u \in \sigma_f(U)} u(x)$.

Definizione 4 Si dice che $y \in \partial U$ soddisfa la condizione di sfera esterna (c.s.e.) se esiste una sfera $B = B(\bar{x}, r) \subset \bar{U}^c$ tale che $B \cap \partial U = \{y\}$. Si dice che U soddisfa la c.s.e. se ogni punto di ∂U soddisfa la c.s.e..

Definizione 5 Dati $y \in \mathbb{R}^n$ e r > 0, definiamo $H_{y,r}(x) := r^{2-n} - |x-y|^{2-n}$, se $n \geq 3$ e $H_{y,r}(x) := \log|x-y|/r$ se n = 2.

Si dimostrino le affermazioni (i)÷(xiii) seguenti.

- (i) $u \in \sigma(U) \cap C^2(U)$ se e solo se $u \in C^2(U)$ e $\Delta u \ge 0$ in U. [Suggerimento: Si ricordi che , se $\phi(r) := \int_{\partial B(x,r)} u d\sigma$, allora $\phi'(r) = \frac{r}{n} \int_{B(x,r)} \Delta u d\sigma$.]
- (ii) Usando **P12**, si dimostri che la Definizione 2 è ben posta e che $u_{x,r}$ è unica.
- (iii) Se $u, v \in \sigma(U)$, allora $w = \max\{u, v\} \in \sigma(U)$. Si dia un esempio di una funzione subarmonica che non sia armonica.
- (iv) (**Principio del massimo per funzioni subarmoniche**) Si dimostri che se $u \in \sigma(U) \cap C(\bar{U})$, allora $\max_{\bar{U}} u \leq \max_{\partial U} u$.
- (v) Se $u \in \sigma(U)$ e $\bar{B}(x,r) \subseteq U$ allora $u \leq u_{x,r}$ in U e $u_{x,r} \in \sigma(U)$. [Suggerimento per dimostrare che $u \leq u_{x,r}$: $u - u_{x,r} \in \sigma(B(x,r))$ e si applichi il principio del massimo su $\bar{B}(x,r)$.]
- (vi) Se $u \in \sigma(U)$ allora vale (1) per ogni $\bar{B}(x,r) \subseteq U$. [Suggerimento: si usi $u \leq u_{x,r}$]
- (vii) u è armonica su U se e solo se u e -u sono subarmoniche. [Suggerimento (per il "se"): si usi $\pm u \leq \pm u_{x,r}$]
- (viii) Se $u \in C(U)$ e se per ogni $x \in U$ esiste r > 0 tale che $B(x,r) \subseteq U$ e, per ogni $0 < \rho \le r$, si ha che

$$u(x) = \int_{\partial B(x,\rho)} u d\sigma , \qquad (2)$$

 $^{^1 \}text{Attenzione}$ al diverso uso della lettera σ in (1).

(ossia vale localmente la proprietà del valor medio), allora u è armonica.

(ix) Sia $f \in C(\partial U)$ e siano $m = \min f$ e $M = \max f$. Allora, $m \le w_f(x) \le M$ per ogni $x \in U$. [Suggerimenti: per la prima disuguaglianza si usi $m \in \sigma_f(U)$; per la seconda il principio del massimo ad ogni $u \in \sigma_f(U)$.]

- (x) See $u, v \in \sigma_f(U)$, allora $\max\{u, v\} \in \sigma_f(U)$.
- (xi) Se $v \in C(\bar{U})$ è superarmonica in U e $v \geq f$ su ∂U , allora $v \geq w_f$ su \bar{U} . [Suggerimento: per ogni $u \in \sigma_f(U)$, u v è subarmonica e non positiva su ∂U , quindi, per il principio del massimo,....]
- (xii) $H_{y,r}$ è armonica in $\mathbb{R}^n \setminus \{y\}$ e $H_{y,r}(y) = 0$ e, se $y \in \partial U$ soddisfa la c.s.e., $H_{y,r}(y) > 0$ su $\partial U \setminus \{y\}$.
- (xiii) Se y soddisfa la c.s.e. allora $\lim_{x\to y} w_f(x) = f(x)$. [Suggerimenti: dato $\varepsilon>0$ (per la continuità di f) esiste $\delta>0$ tale che $|f(x)-f(y)|<\varepsilon$ per ogni $x\in B(y,\delta)\cap\partial U$. Dimostrare che esiste $c=c(\varepsilon)>0$ tale che $|f(x)-f(y)|\leq\varepsilon+H_{y,r}(x)$ per ogni $x\in\partial U$. Si dimostri che $x\to f(y)-\varepsilon-cH_{y,r}(x)\in\sigma_f(U)$ e dedurne che $f(y)-\varepsilon-cH_{y,r}(x)\leq w_f(x)$ in U. Si dimostri che $x\to f(y)+\varepsilon+cH_{y,r}(x)\in C(\bar U)$ ed è superamonica in U e dedurne che $f(y)+\varepsilon+cH_{y,r}(x)\geq w_f(x)$ in U.]

Proposizione² w_f è armonica in U.

In conclusione, da (xiii) e dalla Proposizione segue che:

se U soddisfa la c.s.e., $f \in C(\partial U)$ e definiamo $u(x) := w_f(x)$, per $x \in U$, e u(x) := f(x) per $x \in \partial U$ segue che $u \in C^2(U) \cap C(\bar{U})$ e soddisfa il problema di Dirichlet:

$$\left\{ \begin{array}{l} \Delta u = 0 \ , \forall \ x \in \ U \\ u = f \ , \forall x \ \in \ \partial U \ . \end{array} \right.$$

²La dimostrazione (facoltativa) di questa proposizione si basa sul teorema di Ascoli–Arzela [E, App. C.7, p. 634] e sulla disuguaglianza di Harnack; si veda [DB, p. 56] oppure [J, p. 114] .